.

Overview of Anemia and Diagnostic Hematology

Γεώργιος Καριανάκης Δ/ντής Αιματολογικής Κλινικής Δ.Θ.Κ.Α. ΥΓΕΙΑ

Normal Peripheral Smear

Basophilic Stippling

Howell-Jolly Body

Echinocytes (Burr Cells)

Acanthocytes (Spur Cells)

Spherocytes: Hereditary Spherocytosis

Elliptocytes: Hereditary Elliptocytosis

Teardrop Cells

What is Anemia ?

Important to remember

- Anemia is a clinical sign of disease
- It is not a single disease by itself
- Need to look for the underlying cause !
- Will we ignore a fever with out investigation ?
- Its diagnosis is <u>not that</u> simple !! We'll make it
- Its very common and imp. in our practice
- Drug Rx. depends on the cause

Definition of Anemia

- Decrease in the quantum of circulating red blood cell mass and there by $\downarrow O_2$ carrying capacity
- Most common hematological disorder by far
- Almost always a secondary disorder
- As such, critical for all practitioners to know how to evaluate / determine its cause / treat

Classification of Anemia

- Acute vs. chronic
 - Signs and symptoms
- Red cell kinetics
 - Determined by reticulocyte count
- Red cell size
 - $^{\circ}$ Determined by MCV

Laboratory Evaluation of Anemia

- Complete blood count
- Reticulocyte count
- Peripheral smear

RBC Abnormalities

- Number
 - RBC Count
 - Hgb Hemoglobin
 - Hct Hematocrit
- Size
 - MCV Mean corpuscular volume
- Shape
 - RDW RBC distribution width
 - Peripheral Smear
- Hgb Content
 - MCH Mean corpuscular Hgb
 - MCHC Mean corpuscular Hgb concentration

Hemoglobin (Hgb) & Hematocrit (Hct)

Hgb

- The iron-containing oxygen transport protein in RBCs
- "Normal" varies with age, gender, race, altitude, degree of sexual maturation, heredity

• Hct

- The proportion of blood volume made up of RBCs
- Usually an estimation, apprx. 3x Hgb level

Mean Corpuscular Volume (MCV)

- Reflective of size for RBC
- Normal 🗆 80 100 femtoliter
 - Low \Box microcytic anemia
 - Normal 🗌 normocytic anemia
 - High \square macrocytic anemia

RBC Distribution Width (RDW)

- Essentially measures the variation in the size of the RBC
- Helpful in the diagnosis of microcytic anemias
- Normal 🗆 12 14%
 - Iron Def. Anemia \Box I 4 25%

Mean Corpuscular Hgb (MCH) & Mean Corpuscular Hgb Concentration (MCHC)

- Reflect the hemoglobin content of RBC
- MCH (normal 27 31 picograms/cell)
 - \circ Low \Box hypochromic anemia
 - Normal
 normochromic anemia
 - High || hyperchromic anemia
- MCHC (normal \Box 32 36 g/deciliter)

Classification of Anemia Based on RBC Kinetics and Size

Retic count

	Microcytic	Normocytic	Macrocytic	
Low	Common	Common	Common	
High	Uncommon	Common	Uncommon	

MCV

Microcytic Hypochromic Anemia: Diagnosis

• Mild (MCV > 70 fl)

- Iron deficiency
- Thalassemia
- Lead toxicity
- Sideroblastic anemia
- Anemia of chronic disease

- Severe (MCV < 70 fl)
 - Iron deficiency
 - Thalassemia

Thalassemia: Impaired globin gene prouction Hgb A tetramer

Thalassemia

- Decreased production of normal globin chains:
- a thalassemia deficiency of a gene(s)
- b thalassemia deficiency of b gene(s)

Alpha Thalassemia: Laboratory Findings

αchains	Hgb (g/dl)	MCV (fl)	RDW	Hemoglobin Analysis
$\alpha\alpha/\alpha\alpha$	Normal	Normal	Normal	Normal
αα/-α	12-14	75-85	Normal	Normal
α-/α- or -/αα	11-13	70-75	1	Normal with Hgb Barts
/- α	7-10	50-60	† †	Normal with Hgb Barts
/	-	-	-	Not viable

Alpha Thalassemia: Clinical features

- Absence of I-2 alpha chains
 - Common
 - Asymptomatic
 - Does not require therapy
- Absence of 3 alpha chains
 - Microcytic anemia (Hgb 7-10)
 - Splenomegaly
- Absence of 4 alpha chains
 - Hydrops fetalis (non-viable)

Beta Thalassemia

Clinical Syndrome	Genotype	Hgb (g/dl)	Hgb analysis
Minor (Trait)	$/\beta^+ \text{ or } \beta/\beta^\circ$	10-13	Hgb A2, 🕇 Hgb F
Intermedia	β^+/β^+	7-10	Hgb A2, ╡╡ Hgb F
Major (Cooleys)	β^+/β° or β°/β°	< 7	Hgb A2,

Iron Deficiency Anemia

- A world-wide problem
 - 3% of toddlers age 1-2 years
 - 2-5% of women of child bearing age
- Iron metabolism
- Iron stores
- Laboratory findings of iron deficiency
- Causes of iron deficiency
- Treatment

Body Iron Distribution and Storage

Major Iron Compartments

Metabolic 1800-2500 mg Hemoglobin 300-500 mg Myoglobin Storage 0-1000 mg Iron storage Transit Serum iron 3 mg

Total 3000-4000 mg

Development of Iron Deficiency

Depletion of iron stores

Ferritin low BM iron absent

Compromised iron delivery

Serum iron low TIBC high sTfR high

Iron deficient anemia

Hgb low MCV low

Systemic Manifestations of Iron Deficiency

- Behavioral and neuropsychiatric manifestations
- Pica (pagophagia)
- Angular stomatitis
- Glossitis
- Esophageal webs and strictures
- Koilonychia

Systemic Manifestations of Iron Deficiency

Glossitis

Koilonychia

Angular chelitis

Causes of Iron Deficiency

- Increased iron requirements
- Blood loss
 - Gastrointestinal tract
 - Genitourinary tract
 - Blood donation
- Pregnancy and lactation

- Inadequate iron supply
 - Insufficient dietary iron
 - Impaired iron absorption
 - Gastric surgery
 - Intestinal malabsorption
 - Celiac disease

Unexplained iron deficiency: "Gastrointestinal sideropenia"

- Consider in patients with relapsed/refractory iron deficiency:
 - Celiac disease
 - Atrophic body gastritis
 - H. pylori infection
 - Gastric bypass surgery

Treatment with Oral Iron: General Principles

- Ferrous salts are absorbed better than ferric
- All ferrous salts are absorbed to the same extent
- Ascorbic acid increases absorption and toxicity
- Iron is absorbed best on an empty stomach
- Iron should not be given with antacids
Use of Parenteral Iron

- Agents available
 - Iron dextran (total dose replacement; 1/300 anaphylaxis)
 - Iron polysaccharide (125 mg/d maximum; ~1/1000 anaphylaxis)
- Indications
 - Malabsorption
 - Iron-limited response to erythropoietin
 - Toxicity/noncompliance with oral iron
- Response
 - Maximal increase in hemoglobin synthesis
 - Rapid increase in iron stores

Hypochromic Microcytic

Hypochromia without Anisocytosis: Thalassemia Trait

Severe Hypochromia: Iron Deficiency Anemia

Mixed Population: Treated Iron Deficiency Anemia

Microcytic Hypochromia:Alpha Thalassemia (α-/--)

Microcytic Hypochromia: Beta Thalassemia Major

Microcytic Hypochromia: Beta Thalassemia Major

Sickle Cell Anemia: Hgb SS

Hemoglobin S-Beta Thalassemia

Normocytic Anemia with Low Reticulocyte Count

- Decreased stimulation of bone marrow
 - Anemia of chronic disease
 - Chronic renal insufficiency
 - Metabolic disorders
- Isolated decrease in RBC precursors
- Bone marrow damage
 - Fibrosis
 - Stem cell damage
 - Infiltration with tumor/infection
- Intrinsic bone marrow disease
 - Myelodysplasia/sideroblastic anemia

Anemia of Chronic Disease

 Associated conditions 	Prevalence
 Infection 	20-95%
 Viral, bacterial, TB, parasitic, fungal 	
 Autoimmune disease 	8-17%
 RA, SLE, Sarcoidosis, IBD, Vasculitis 	
• Cancer	30-77%
 Chronic solid organ rejection 	8-70%
 Characteristics 	
 Anemia of variable severity (mild-severe) 	
 Low erythropoietin level 	

- Low reticulocyte count
- WBC and platelet counts are normal

Iron Transfer Between Cells and Tissues: Impaired in Anemia of Chronic Disease

Hentze, et.al, Cell 117: 285 (2004)

Feroportin – DMT

- Εξαγωγή του Fe από το κύτταρο
- Μεταφορά Fe εντός του κυττάρου

Transferrin

- Κύρια πρωτείνη μεταφοράς
- Δεσμέυει το δισθενή Fe

Iron Transfer Between Cells and Tissues: Mediated by Hepcidin

Hepcidin

Iron overload Anemia of chronic disease Iron deficiency Increased iron demand (hemolysis)

Hepsidin

- Υπερπαραγωγή εψιδίνης οδηγεί σε μείωση της απορρόφησης από το εντεροκύτταρο και σε μειωμένη απελευθέρωση από τις ενδοκυττάριες αποθήκες.
- Πεπτιδική ορμόνη που εκκρίνεται από το ήπαρ.

Summary

- Hepcidin plays a pivotal role in control of iron
- Increased hepcidin: Anemia of chronic disease
- Decreased hepcidin: Hemochromatosis
 - Decreased hepcidin transcription in liver (HFE, Hemojuvelin orTfR2)

Anemia of Chronic Disease

- Treatment options
 - Underlying condition
 - RBC transfusion
 - Erythropoietic agent
 - Iron supplement not usually indicated
- Hepcidin inhibitors (?)

Anemia of Chronic Renal Disease

- Characteristics
 - Widespread 8% of US population has increased creatinine
 - 23% of patients with chronic renal disease have HCT $\leq 30\%$
 - Long-term anemia is a risk for LVH
 - Risk factor for mortality
- Etiology
 - Insufficient production of erythropoietin

Anemia in the Elderly

- General principles:
 - Anemia in elderly defined as Hgb <13 g/dl for men; Hgb < 12 g/dl for women
 - ~3 million individuals in the US age >65 are anemic
 - Anemia more common in females <75 years; more common in males >75 years

Potential Mechanisms of Anemia in the Elderly

- Dysregulation of the inflammatory response
- Blunting of hypoxia/erythropoietin sensing mechanism
- Sarcopenia
- Alterations in the stem cells
- Decrease in sex steroids (testosterone)
- Frequent co-morbid medical conditions
- Polypharmacy

Pure Red Cell Aplasia

- Normocytic anemia with reticulocyte count < 0.5%
- Absent erythroid precursors in marrow
- Caused by Parvovirus B19

Clinical setting

- Immunocompetent patients with chronic hemolysis
- Immunodeficient patients with persistent viremia

Macrocytic Anemia with Low Reticulocyte Count

- Megaloblastic anemia
 - Vitamin BI2 deficiency
 - Folate deficiency
- Non-megaloblastic macrocytic anemia
 - Liver disease
 - Hypothyroidism
 - Drug-induced (DNA synthesis block)
 - Myelodysplastic syndrome

Folate and Cobalamin Daily Requirements		
		Diet
	Vitamin B12 (Cobalamin)	Folate
Source Body stores	Animal products 5 mg	Widespread 5 mg
Daily requirement Daily intake Dietary deficiency	2-5 μg 10-20 μg Rare	50-200 μg 400-800 μg Common

Vitamin BI2 Deficiency: Common Mechanisms

- Intragastric events
 - Inadequate dissociation of cobalamin from food protein
 - Total or partial gastrectomy
 - Absent intrinsic factor secretion
- Proximal small intestine
 - Impaired transfer of cobalamin from R protein to intrinsic factor
 - Usurpation of luminal cobalamin
 - Bacterial overgrowth
 - Diphylobothrium latum (fish tapeworm)
- Distal small intestine
 - Disease of the terminal ileum

Pernicious Anemia

- Most common cause of vitamin B₁₂ deficiency
- Occurs in all ages and ethnic backgrounds
- Associated with other autoimmune diseases
 Screen for thyroid disease every I-2 years
- Pernicious anemia is a systemic disease
 Gastrointestinal tract involvement
 - Gastronntestinar tract myörven
 - Neurologic involvement

Pernicious Anemia: Laboratory Diagnosis

- Anti-intrinsic factor antibodies
 - Specific but not sensitive
- Anti-parietal cell antibodies
 - Sensitive but not specific
- Schilling test
 - Procedure
 - Absorption of radiolabeled cobalamin ± Intrinsic factor
 - Measure urinary excretion of radioactivity
 - Specific but not sensitive

Megaloblastic anemia

Macro-Ovalocytes

Hypersegmented Neutrophils

Treatment of Vitamin BI2 Deficiency

- Parenteral cobalamin
 - I mg/day x 7 days
 - I mg/week x 4 weeks
 - I mg/month for life
- Oral cobalamin
 - I mg/day for life

Folate Deficiency

- Minimum daily folate requirement is 50 µg
- Usual dietary folate 50-500 µg
- Absorption in small intestine
- Causes of folate deficiency
 - Dietary (90%)
 - Alcohol abuse
 - Pregnancy
 - Malabsorption
 - Drug-induced
- Treatment oral folic acid supplementation

Normocytic Anemia with High Reticulocyte Count

- Bleeding may have similar laboratory findings as hemolysis
- High reticulocyte count may lead to macrocytosis
- Diagnosis is usually ascertained
- Clinical manifestations of long term hemolysis
 - Cholelithiasis
 - Risk of aplastic crisis (Parvovirus B19)
- Classification
 - Hereditary vs. acquired
 - Extravascular vs. intravascular
 - Immune vs.non-immune

Hemolytic Anemia with Extravascular Hemolysis

- Extravascular (reticuloendothelial system)
 - Hereditary
 - Hemoglobinopathies (sickle cell anemia)
 - Enzymopathies (G6PD deficiency)
 - Membrane defects (hereditary spherocytosis)
 - Acquired
 - Immune mediated
 - Autoimmune hemolytic anemia
 - Non-immune mediated
 - Spur cell hemolytic anemia
 - Paroxysmal nocturnal hemoglobinuria (PNH)

Glucose-6-Phosphate Dehydrogenase Deficiency

- G-6-PD: reduces NADP/oxidizes glucose-6-phosphate
 - Detoxifies free radicals and peroxides
- Sex-linked disorder
- 8% of African-American males
- Hemolytic anemia occurs in the presence of stress (infection or drugs)
 - African form mild hemolysis
 - Mediterranean form more severe
 - Unique sensitivity to fava beans

Acquired Hemolytic Diseases

- Immune mediated hemolytic anemia
- Non-immune mediated

Autoimmune Hemolytic Anemia

- Warm antibodies (IgG-mediated)
 - Primary 45%
 - Secondary 40%
 - Lymphoproliferative disease
 - Connective tissue disease
 - Infectious disease
 - Drug-induced

15%

- Laboratory testing
 - Normocytic/macrocytic anemia
 - Peripheral smear: spherocytosis
Anti-Globulin (Coombs) Testing

Direct antiglobulin testing

Anti-C3d Anti-IgG

Indirect antiglobulin testing

Spherocytes: Autoimmune Hemolytic Anemia

Treatment of Autoimmune Hemolytic Anemia

- Treat underlying disease if indicated
- Prednisone (I mg/kg/day for 2 weeks, then taper)
- Splenectomy
- Other
 - Immunosuppressive agents (Rituximab)
 - IVIG
- Similar approach to ITP

Hemolytic Anemia with Intravascular Hemolysis

- Mechanical damage (microangiopathy)
- Chemical damage
- Infection
- ABO incompatibility

Differential Diagnosis of Microangiopathic Hemolytic Anemia

- Thrombotic thrombocytopenic purpura (TTP)
- Hemolytic uremic syndrome (HUS)
- Disseminated intravascular coagulation (DIC)
- Vasculitis
- Malignant hypertension
- Metastatic neoplasm with vascular invasion
- Preeclampsia/HELLP syndrome of pregnancy

Schistocytes: Microangiopathic Hemolytic Anemia

Morphology of Leukocytes

- Normal WBC populations
 - Neutrophils (granulocytes)
 - Lymphocytes
 - Monocytes
 - Eosinophils
 - Basophils

Neutrophil

Eosinophil

Neutrophil

Eosinophil

Monocytes

Monocytes

Small Lymphocyte

Basophils

Dohle Bodies

Toxic Granulation

Toxic Granulation

Toxic Granulation and Vacuole Formation

Hypersegmented Neutrophils

Auer Rod: Acute Myeloid Leukemia

Myeloid Leukemias and Leukemoid Reaction

- Bone marrow exam is almost always indicated
 - Cytogenetic analysis
 - Flow cytometry analysis

Neutrophilia: CML

Pelger-Huet Abnormality

Acute Myeloid Leukemia: MI Myeloblasts without Differentiation

Acute Myeloid Leukemia: M2 Myeloblasts with Some Differentiation

Acute Myeloid Leukemia: M3 Promyelocytic Leukemia

Acute Myeloid Leukemia: M4 Myelomonocytic Leukemia

Acute Myeloid Leukemia: M5 Monocytic Leukemia

Acute Myeloid Leukemia: M6 Erythroleukemia

Acute Myeloid Leukemia: M7 Megakaryocytic Leukemia

Atypical (Reactive) Lymphocytes

Atypical (Reactive) Lymphocytes

Plasmacytoid Lymphocytes

Plasma Cell: Plasma Cell Leukemia

Hairy Cell: Hairy Cell Leukemia

Chronic Lymphocytic Leukemia (CLL)

CLL: Smudge Cells

CLL: Balloon Cells

Acute Lymphocytic Leukemia: LI

Acute Lymphocytic Leukemia: L2

Acute Lymphocytic Leukemia: L3 (Burkitts)

